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Abstract
We develop a spacetime neural network method
with second order optimization for solving
quantum dynamics from the high dimensional
Schrödinger equation. In contrast to the stan-
dard iterative first order optimization and the time-
dependent variational principle, our approach uti-
lizes the implicit mid-point method and generates
the solution for all spatial and temporal values
simultaneously after optimization. We demon-
strate the method in the Schrödinger equation
with a self-normalized autoregressive spacetime
neural network construction. Future explorations
for solving different high dimensional differential
equations are discussed.

1. Introduction
Differential equation plays a fundamental role in science
and engineering. Among different differential equations,
the Schrödinger equation is a famous example of high di-
mensional differential equations that describes quantum
dynamics of a physical system. The real time Schrödinger
equation is given by

i
∂ψ(x, t)

∂t
= Hψ(x, t) (1)

and the imaginary time version is

∂ψ(x, t)

∂t
= −Hψ(x, t) (2)

where ψ(x, t) is a complex-valued function whose dimen-
sionality grows exponentially with respect to the number of
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particles (x is the configuration of the particles) and H is
the Hamiltonian of the physical system.

With the recent advancement of quantum science and en-
gineering, the research of quantum dynamics is becoming
an important topic. Quantum dynamics takes place in vari-
ous areas, such as photosynthesis, chemical reactions, cold
atom experiments, and quantum computation (Romero et al.,
2014; Clary, 1998; Cirac & Zoller, 2012; Arute et al., 2019).
New approaches for solving the Schrödinger equation will
provide powerful tools to understand and explore quantum
dynamics with various applications.

In recent years, the advancement of machine learning
opens up new possibilities for solving the high dimen-
sional Schrödinger equation (Carleo & Troyer, 2017). The
standard approach is to compactly represent the high-
dimensional wave function ψ(x, t) at a single moment in
time t using a neural network. The differential equation then
indicates how to update in time the full high-dimensional
wave function. One would typically optimize a new neural
network for time t + dt which compactly represents this
propagated state. This is accomplished by optimizing the
neural network representation at time t+ dt to maximally
match the non-compact state propagated at first order.

In this work, we develop an alternative approach. Instead
of building the wave function snapshot by snapshot, we
develop an approach which simultaneously compresses the
entire space-time wave function. This is accomplished by
having an internal temporal network which takes a time
t and outputs the parameters for a second external spatial
network which compactly represents the full wave function
at that time t as an autoregressive Transformer (Luo et al.,
2021). The whole spacetime neural network is then opti-
mized using a second order formulation with an implicit
mid-point method. Our work makes a direct connection
with the path-integral formulation of quantum mechanics
that is used to describe quantum field theories (Peskin &
Schroeder, 1995).

In Sec. 2, we describe the standard first-order single time-
slice approach. We then (Sec. 3 and 4) go on to describe our
novel space-time formulation. Our approach (Sec. 5) was
tested on a 12-spin Heisenberg model with imaginary time
evolution and achieved good performance. Even though the
current work is demonstrated with imaginary time quantum
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Figure 1. Second order optimization with spacetime neural network. The spacetime neural network consists of an internal temporal
network and an external spatial network. The internal temporal network provides time dependent weights for the external spatial network
at each time step. The loss function is computed over all time steps and is used to train the spacetime neural network.

dynamics, our approach is general and applies to both real
time dynamics as well as more general classes of differential
equations.

2. First Order Optimization and
Time-dependent Variational Principle

One way to solve the Schrödinger equations in quantum
dynamics is to introduce a loss function based on the first
order Euler method and minimize the loss function with
respect to the neural network representation (Kochkov &
Clark, 2018). This can be used as a projective method which
iteratively updates the neural network at each time step. For
example, in the case of the imaginary time evolution of the
Schrödinger equation,

L(t)
1 =

∑
x

|ψ(x, t+ dt)− (I −Hdt)ψ(x, t)|2 (3)

where I is the identity operator. For each t, L(t)
1 is opti-

mized with respect to ψ(x, t+dt) using stochastic gradient
descent while ψ(x, t) is fixed without taking gradient. This
procedure is then iterated where time t + dt becomes the
new time t.

Minimizing Eq. 3 is equivalent to introducing a nonlinear
differential equation in the parameter space (Yuan et al.,
2019). For a fixed time t, by denoting the parameters for
the neural network representation of ψ(x, t) as θt, the time-
dependent variational principle (Yuan et al., 2019) claims
dθt
dt = −F−1∇θtE, where E =

∑
x ψ

∗(x, t)Hψ(x, t) and
F =

∑
x∇θtψ∗(x, t)∇θtψ(x, t) is the quantum Fisher in-

formation matrix. Furthermore, a first order discretization
with Euler method gives rise to the gradient update formula
with a learning rate of dt,

θt+dt = θt − dtF−1∇θtE (4)

If one views E as a loss function, the above formula is

actually the natural gradient method (Amari, 1998) in the
context of quantum mechanics. Since the natural gradient
method has information beyond first order optimization,
it implies that a first order optimization in terms of time
step with respect to the function in the wave function space
(Eq. 3) gives rises to an optimization beyond first order in
the parameter space (Eq. 4).

3. Second Order Optimization with
Spacetime Formulation

An implicit mid-point method which generalizes Eq. 3 to
second order (Eq. 5) has been recently used for real time
evolution of the Schrödinger equation (Gutiérrez & Mendl,
2021). Notice that the mid-point method is generic and
not limited to the real time Schrödinger equation. It is
known that the second order implicit mid-point method
has the advantage of preserving the sympletic form of the
Hamiltonian dynamics as well as be more stable with larger
time step dt compared to the first order Euler method (Haier
et al., 2006). For each t, L(t)

2 is optimized with respect to
ψ(x, t+dt) using stochastic gradient descent while ψ(x, t)
is fixed without taking gradient. This procedure is iterative
as in the case of the first order optimization with Eq. 3.

L(t)
2 =

∑
x

∣∣∣∣(I + iHdt

2
)ψ(x, t+ dt)− (I − iHdt

2
)ψ(x, t)

∣∣∣∣2
(5)

It is a common practice to represent ψ(x, t) with a neural
network for each t and perform iterative optimization with
approaches in Eq. 3, 4, 5 in the community of neural network
quantum states (Carleo & Troyer, 2017; Kochkov & Clark,
2018; Gutiérrez & Mendl, 2021). The neural network in the
above approaches essentially only represents the spatial part
of the wave function because different neural networks are
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required for different t. Although the above approaches are
flexible and useful, the number of copies of neural network
increases linearly with the number of time step.

In this work, we propose a second order optimization
method with spacetime formulation, which makes use of the
implicit mid-point method and the full spatial and temporal
neural network representation. Instead of parameterizing
the wave function ψ(x, t) with a neural network for each dis-
crete time point t, we construct a spacetime neural network
that represents ψ(x, t) for all x and t altogether. We further
utilize the second order implicit mid-point formulation and
define a new loss. For example, in the context of imaginary
time evolution of the Schrödinger equation over a total time
T , we have

LT =

T∑
t

Lt((I +
Hdt

2
)ψ(x, t+ dt), (I − Hdt

2
)ψ(x, t))

(6)
where Lt(ψ1(x, t), ψ2(x, t)) is a loss function between two
wave functions ψ1(x, t) and ψ2(x, t) for a fixed t. In this
work, we choose Lt to be the log overlap function such that

Lt(ψ1(x, t), ψ2(x, t)) = − log
|〈ψ1, ψ2〉|2

〈ψ1, ψ1〉〈ψ2, ψ2〉
(7)

where 〈ψ1, ψ2〉 =
∑

x ψ
∗
1(x, t)ψ2(x, t). Notice that the

key difference between Eq. 6 and Eq. 5 is that Eq. 6 is
defined over all time t and ψ(x, t) is represented by only
one spacetime neural network. For T = dt as one time step,
Eq. 6 will reduce to the imaginary time version of Eq. 5 by
choosing Lt as the L2 norm. Fig. 1 demonstrates the high
level picture of the second order optimization spacetime
neural network. Our spacetime neural network consists
of internal temporal network and external spatial network
and the details will be given in the following section. The
internal temporal network generates a series of external
spatial networks to represent a set of {ψ(x, ti)}, which
are used in the loss function Eq. 6. To optimize Eq. 6
with high dimensional ψ(x, t), we use exact sampling for
configuration x and take a uniform discretization in [0, T ]
with step dt and sum over t.

The formulation of Eq. 6 provides a second order method
for optimizing the spacetime neural network ψ(x, t), which
is able to predict values of ψ(x, t) for any x and t after the
optimization. Even though the main discussion of our work
is in the context of high dimensional Schrödinger equation,
the approach could be extended to other high dimensional
differential equations.

4. Architecture of Spacetime Neural Network
In this section, we propose a self-normalized spacetime
neural network architecture for solving the high dimen-
sional Schrödinger equation. Consider a wave function

ψ(x, t) of N spin particles for a fixed t; its dimensionality
grows exponentially as 2N . In order to resolve the high-
dimensionality issue presented by quantum mechanics, we
need a compact representation for the wave function. In ad-
dition, the wave function is a complex-valued function that
is L2 normalized, which requires that

∑
x |ψ(x, t)|2 = 1

∀t. For a wave function ψ(x) with only spatial dependence,
recent progress (Sharir et al., 2020) in autoregressive mod-
els provides a method for representing ψ(x) with polyno-
mial number of parameters and maintaining the normal-
ization condition

∑
x |ψ(x)|2 = 1. The key idea behind

the autoregressive model is to factorize the wave function
into conditional wave functions on previous sites, such that
ψ(x) = ψ(x1, ..., xN ) =

∏N
k=1 ψ(xk|xk−1, ..., x1). One

can normalize the high dimensional wave function ψ(x) by
normalizing all the conditional wave function distributions∑
x1,...,xk

|ψ(xk|xk−1, ..., x1)|2 = 1 for all k ≤ N . In this
work, we generalize the autoregressive model to a spacetime
neural network wave function such that

ψ(x, t) =

N∏
k=1

ψ(xk|xk−1, ..., x1, t) (8)

This construction ensures ψ(x, t) is normalized for each t.
Therefore, for each t, x can be sampled exactly according to
the conditional probability distribution of the wave function,
making it more efficient compared to Markov chain Monte
Carlo sampling for high dimensional wave functions.

To realize Eq. 8, we construct the spacetime neural network
with an internal temporal network and an external spatial
network as Fig. 2 shows. For the external spatial network,
we use a Transformer since it has the desired autoregres-
sive property and can compactly represent high dimensional
distributions. Transformers (Vaswani et al., 2017) were in-
troduced in 2017 for natural language processing and later
were found applicable to many different areas. The external
spatial network consists of an embedding layer, a positional
encoding layer, L transformer layers (L = 1 in our ex-
periment), a linear layer and a log softmax layer. Each
transformer layer is composed of a multi-head attention
layer and a feed-forward layer. For our implementation,
we choose 16 as the hidden dimension for all transformer
layers and linear layers, and we set the number of atten-
tion heads to 8. The internal temporal network takes the
current time t as input and adds time dependencies to the
spatial network after the embedding layer and before the
log softmax layer. The neural network takes the N -particle
configuration x = (x0, x1, ..., xN−1) and the current time t
as inputs, and outputs the log of the wave function ψ(x, t)
at time t.
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Figure 2. Architecture of autoregressive spacetime neural network. The neural network has an external spatial network and an internal
temporal network. The internal temporal network takes the time as the input and generates the relevant weights for the external spatial
network. The external spatial network is a Transformer which utilizes these weights to generate the log wave function.

5. Numerical Experiments
We benchmarked our spacetime neural network on a Heisen-
berg model with 12 spins for imaginary time evolution. The
Hamiltonian H of the Heisenberg model is given by:

H = −J

(∑
i

σxi σ
x
i+1 +

∑
i

σyi σ
y
i+1

)
+
∑
i

σzi σ
z
i+1 (9)

where J is the coupling constant and σxi , σ
y
i , σ

z
i are Pauli

matrices acting on site i. We set J = 1, dt = 0.01 and
T = 2 for solving ψ(x, t), where x is the spin configuration
of the 12 sites. The optimization is performed using Adam
optimizer for 150 steps.
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Figure 3. Overlap and energy comparison between spacetime neu-
ral network and the exact solution on a 12 spins Heisenberg model.

We use the absolute overlap value between the space-
time neural network and the exact solution, i.e.

|
∑

x ψ
∗(x, t)ψexact(x, t)|, to measure the accuracy of the

simulation of imaginary time evolution. The exact solu-
tion is obtained from exact diagonalization. We also com-
pute the exact and the predicted energy for the wave func-
tions at different time steps. The energy is calculated as
E(t) =

∑
x ψ

∗(x, t)Hψ(x, t), where H is the Hamilto-
nian of the system. Our experiment results are shown in Fig.
3 where the top plot shows the overlap and the bottom plot
shows the energy. It is found that our method provides good
overlap and close match in the energy to the exact solution.

6. Discussions and Conclusion
We have introduced a spacetime neural network with a
second order optimization for solving high dimensional
Schrödinger equations. The advantages of the approach
come from optimizing ψ(x, t) for all x and t with a sec-
ond order optimization formulation. Our spacetime neural
network is autoregressive and self-normalized for each t,
which enables efficient exact sampling in high dimension.
Contrasted to the standard method of obtaining the wave
function at discrete times with iterative projective method,
our spacetime neural network ψ(x, t) stores all spatial and
temporal information, which is indeed equivalent to obtain-
ing the path integral in quantum mechanics. It further allows
to compute observables correlated in time, such as the Green
function.

Even though the current experiments are performed for
quantum dynamics with the imaginary time Schrödinger
equation, our approach is general and it could be applied to
differential equations in both quantum and classical physics
contexts. One next step is to explore the formulation in
the situation of real time quantum dynamics, where there
could be more oscillation in the dynamics. Our work is
also connected to recent work (Raissi et al., 2019; Sirig-
nano & Spiliopoulos, 2018; Han et al., 2018) in the applied
mathematics community which aims to solve differential
equations ∂u(x,t)

∂t = Lu(x, t) (L is an operator) by param-
eterizing u(x, t) with neural networks. It will be interest-
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ing to apply our approach to different scenarios, such as
the Hamilton-Jacobi equation, the high-dimensional master
equation and the Black-Scholes model. It is also anticipated
that improvements on the architecture of the spacetime neu-
ral network will be helpful for solving differential equations
in different setups.

Another interesting direction is to explore the connec-
tion between our spacetime neural network and the neural
ODEs (Chen et al., 2019). One can use neural ODEs to
generate the spacetime neural network for different t and
consider the optimization using adjoint method. We believe
that our work opens up new opportunities for research in
machine learning, applied mathematics, and physics.
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