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ABSTRACT

Cryo-electron microscopy (EM) single particle reconstruc-
tion is a general technique for 3D structure determination
of macromolecules. However, because the images are taken
at low electron dose, it is extremely hard to visualize the
individual particle with low contrast and high noise level.
In this paper, we propose a novel framework for cryo-EM
single particle image denoising, which incorporates the re-
cently developed multi-frequency vector diffusion maps [1]
for improving the identification and alignment of images with
similar viewing directions. In addition, we propose a novel
filtering scheme combining graph signal processing and trun-
cated Fourier-Bessel expansion of the projection images.
Through both simulated and publicly available real data, we
demonstrate that our proposed method is efficient and robust
to noise compared with the state-of-the-art cryo-EM 2D class
averaging algorithms.

Index Terms— Cryo-electron microscopy, multi-frequency
vector diffusion maps, image denoising.

1. INTRODUCTION

Cryo-electron microscopy (cryo-EM) is a ground-breaking
technology that enables us to image biomolecules in their
native functional states at high resolution. In cryo-EM ex-
periments, randomly oriented protein particles are distributed
evenly within the special sample grid holes, an electron
beam projects such particles and generates a projection im-
age, which is modulated by the contrast transfer function
(CTF) [2] and contaminated by noise with an extremely low
signal-to-noise ratio (SNR). Single particle images are then
boxed out by a particle picking step [3, 4] and the goal is to
recover the 3D structure of the particle (see Fig. 1).

Since the SNR of the raw images is typically too low for
reconstruction, in current frameworks a crucial step called
2D class averaging aims to denoise and improve the image
quality. It groups, aligns, and averages images with similar
viewing directions. The denoised images are then taken as
the input to 3D ab initio reconstruction [5, 6] and refinement
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Fig. 1: Image formation in cryo-EM: The electron beam projects the
randomly oriented particles and generates projection images, which
is corrupted by noise with extremely low SNR.

algorithms. A better denoising result is beneficial in a vari-
ety of aspects, not only because it leads to a more accurate
3D reconstruction [7], but also the denoised image itself can
be used to directly observe heterogeneity, discover symmetry,
and separate particles into subgroups for additional analysis.
Therefore, it is important to have fast and accurate algorithms
for denoising cryo-EM images.

Many existing software packages [8, 9, 10] for single par-
ticle reconstruction contain algorithms for 2D class averag-
ing. Most common methods are basically variants of k-means
with iterative rotational alignment and clustering. Another
kind of method implemented in the ASPIRE class averaging
pipeline [7] is a two-stage algorithm, which first performs an
initial nearest neighbor search and alignment estimation, by
using rotationally invariant features to identify images of sim-
ilar views, then it applies vector diffusion maps [11, 12] to fur-
ther improve the initial result by considering the consistency
of in-plane rotations among neighboring images. However,
when SNR is extremely low, all the methods above might fail
to generate satisfying 2D class averaging results, which leads
to inaccurate 3D ab initio reconstructions.

In this paper, we propose a novel framework for de-
noising cryo-EM images, by applying the recently devel-
oped algorithm called multi-frequency vector diffusion maps
(MFVDM) [1] for improving the efficiency and accuracy of
nearest neighbor search and alignment estimation. Further-
more, we propose to denoise the truncated Fourier-Bessel
expansion coefficients of the images using the top eigenval-
ues and eigenvectors of the averaging operators in MFVDM,
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(a) Clean (b) w. CTFs (c) SNR = 0.01

Fig. 2: Simulated 70S ribosome projection images: (a) clean images;
(b) images altered by CTFs; (c) images contaminated by additive
white Gaussian noise at SNR = 0.01.

and reconstruct the images from the denoised expansion co-
efficients. Unlike traditional 2D class averaging methods, this
approach does not require clustering and rotation of the orig-
inal Cartesian grid images. We demonstrate the performance
of our framework by comparing it with the state-of-the-art
algorithms on both simulated and experimental datasets.

2. METHODS

2.1. Image formation model and geometry

In cryo-EM experiments, each particle is embedded in a thin
layer at an unknown orientation characterized by a 3 × 3
orthogonal matrix R = [R1, R2, R3] ∈ SO(3). Assuming
particles are well centered, the projection image I of a sin-
gle particle can be expressed as a line integral I(x, y) =∫∞
−∞ φ(xR1 + yR2 + zR3)dz, where (x, y) is the pixel lo-

cation and φ is the 3D volume of the particle. In particular,
the matrix R can be divided into two parts: (1) the last col-
umn R3 represents the viewing (projection) direction v = R3

of the particle; (2) the first two columns namely R1 and R2

form a basis of the tangent plane whose normal vector is v.
As a result, projection images with similar viewing directions
are almost identical up to some in-plane rotations.

The projection images are corrupted by two phenomena:
contrast transfer functions (CTFs) [2] and noise. The CTF
modulates the phase amplitudes and flips the signs of the
phases in the Fourier domain, which leads to a systematic
alteration of the image data (see Figs. 2(a) and 2(b)). Then
noise is assumed to be added on the image modulated by CTF
with zero mean (see Fig. 2(c)). In the Fourier domain, each
noisy image Ii is related to the underlying clean image Īi via

F(Ii) = Ci · F(Īi) + εi, for i = 1, . . . , n, (1)

where F denotes the Fourier transform and εi represents the
additive noise. The CTF Ci is assumed to be given for each
particle image.

To denoise the images, 2D class averaging [2] is a crucial
step that first identifies images with similar viewing directions
and registers those images by in-plane rotations (and shifts if
images are not well centered), then it denoises by aligning and
averaging neighboring images. To identify images of similar
views, for a pair of images Ii and Ij , it is natural to define the
rotational invariant distance (RID) dRID(i, j) as

dRID(i, j) = min
α∈[0,2π)

‖Ii −RαIj‖ , (2)

where Rα is an operator that rotates image Ij by an angle α,
and the associated optimal alignment is denoted by αij . In
the noiseless case, since small dRID indicates close viewing
directions (assuming no symmetry), class averaging can be
easily done by clustering based on dRID. While in the case
of extremely low SNR, noise dominates and could align well
instead of the underlying signals, then images with distant
views could also have a small dRID. As a result, directly using
dRID would lead a poor class averaging result.

In [13], we introduced a fast steerable principal com-
ponent analysis (sPCA) and a Wiener filtering approach to
denoise sPCA expansion coefficients of the images. The
denoised coefficients can be used to construct rotational in-
variant features according to [7]. We identify the initial
κ-nearest neighbors for each image using a randomized algo-
rithm for fast nearest neighbor search [14] on image features.
The computational complexity for the initial nearest neigh-
bor search scales as O(nd log n) instead of O(n2d) for brute
force search, where d is the dimension of the invariant feature.

2.2. Improving nearest neighbor identification and rota-
tional alignment

To improve the accuracy of nearest neighbor identification
from the noisy image data, we use the similarity measure
based on multi-frequency vector diffusion maps (MFVDM) [1].
The first step is to build a graph G = (V,E) based on the
initial κ-nearest neighbor list and pairwise alignment angles.
Each node in the graph represents an image and two nodes
i and j are connected if the (i, j) pair is in the κ-nearest
neighbor list. Each edge contains the optimal alignment αij .

We notice that for clean images of the same viewing di-
rections, Ii, Ij and Il, the pairwise alignment angles αij , αjk
and αkl must satisfy

k(αij+αjk+αkl) = 0 mod 2π, for k = 1, 2, . . . ,K. (3)

This consistency in Eq. (3) can be extended to cycles of
four or more images. The cycle consistency allows us
to detect images with similar viewing directions in the
presence of wrongly identified nearest neighbors. To sys-
tematically incorporate the alignment information and im-
pose the consistency of alignments, given the initial graph
G= (V,E), we construct a set of n × n weight matrices Wk

for k = 1, 2, . . . ,K such that

Wk(i, j) =

{
eıkαij (i, j) ∈ E,
0 (i, j) /∈ E,

(4)

where αij = −αji. In [15], we detail the spectral prop-
erties of the matrices Wk. We define the diagonal de-
gree matrix D as D(i, i) = deg(i) =

∑
j:(i,j)∈E 1. Then

the matrix Sk = D−1Wk can be viewed as an averag-
ing operator of the vector fields, because for v ∈ Cn,
(Skv)(i) = 1

deg(i)

∑
j:(i,j)∈E e

ıkαijv(j) and it averages the
vectors at nodes j connected to i after being rotated by αij .
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S2t
k (i, j) is a weighted sum of the transformations along all

length-2t paths connecting i and j. A large value of |S2t
k (i, j)|

means the transformations along all the paths are consistent,
which indicates that Ii and Ij are true neighbors with high
probability. This affinity can be efficiently approximated us-
ing the top eigenvalues λ(k)

1 ≥ λ
(k)
2 ≥ · · · ≥ λ

(k)
mk and eigen-

vectors {u(k)
` }

mk

`=1 of a similar matrix S̃k =D1/2SkD
−1/2 =

D−1/2WkD
−1/2. Please refer to [1] for more details. The re-

fined nearest neighbor list is determined by
∑K
k=1 |S2t

k (i, j)|.
For nodes i and j of the same viewing directions, the

eigenvectors satisfy u(k)
` (i) = eıkαiju

(k)
` (j). Therefore, we

can estimate the in-plane rotational alignment angles from the
top eigenvalues and eigenvectors of S̃k,

α̂ij = argmax
α∈[0,2π)

kmax∑
k=1

(
mk∑
`=1

(
λ
(k)
`

)2t
u
(k)
` (i)u

(k)
` (j)

)
e−ıkα. (5)

Based on the new nearest neighbor list and alignment angles,
we can build a set of new matrices Ŵk, D̂, and Ŝk following
the procedure of constructing Wk, D, and Sk. The averaging
operator Ŝk is used for image denoising.

2.3. Denoising and CTF correction

We assume that each image Ii takes discrete samples on a
Cartesian grid from an underlying continuous function with
bandlimit s and essentially concentrated within a radius of
R. Then the image in the Fourier domain can be well ap-
proximated by the truncated expansion on Fourier-Bessel ba-
sis ψk,qs (ξ, θ) [13] supported on the disk of radius s,

Ps,RF(Ii)(ξ, θ) =

kmax∑
k=−kmax

pk∑
q=1

aik,qψ
k,q
s (ξ, θ), (6)

where Ps,R is the orthogonal projection from the space of L2

functions supported on a disk of radius s to the space of func-
tions spanned by a finite number of Fourier-Bessel functions.
The truncation kmax and {pk}kmax

k=1 are determined through a
sampling criterion detailed in [16, 13]. When Ii is rotated
clockwise by α, the Fourier-Bessel expansion coefficient aik,q
is simply transformed to aik,qe

ıkα, and 2D class averaging can
instead be performed on aik,q .

Let A(k) be the n × pk matrix of the coefficients with
angular frequency k for all the n images, such that the ith row
corresponds to {aik,q}

pk
q=1 for the ith image. Then applying

Ŝk to A(k) for all k achieves denoising by phase aligning and
averaging the coefficients among the nearest neighbors.

However, simply averaging nearest neighbors could result
in over-smoothing, since each image is not exactly identical
to its aligned neighbors and the estimation error of alignment
exists. To resolve this issue, we use 2Ŝk− Ŝ2

k instead of Ŝk as
the denoising operator, which is related to forward and back-
ward diffusion on the graph that first smooths and then sharp-
ens the signal defined on the graph [17, 18]. As a result, this

operator reduces the blurring caused by simply using Ŝk. It is
equivalent to applying a spectral filter h(·) to the eigenvalues
of Ŝk such that h(λ) = 2λ− λ2. In addition, since eigenvec-
tors with smaller eigenvalues are more oscillatory and more
easily perturbed by noise, it is necessary to set h(λ) = 0
for λ < δ, which is equivalent to keeping the top mk � n
eigenvalues and eigenvectors of Ŝk. Then the matrices of the
denoised coefficients at frequency k is given as

Â(k) = h(Ŝk)A(k) = D̂−1/2h(D̂−1/2ŴkD̂
−1/2︸ ︷︷ ︸

=UkΛkU∗
k

)D̂1/2A(k)

= D̂−1/2Ukh(Λk)U∗k D̂
1/2A(k), (7)

where Λk is a diagonal matrix that contains the eigenvalues
of Ŝk. The Fourier coefficients of the denoised image without
CTF correction can be recovered from Â(k) as

F
(
Ĩi

)
(ξ1, ξ2) =

kmax∑
k=−kmax

pk∑
q=1

âik,qψ
k,q
s (ξ1, ξ2), (8)

where (ξ1, ξ2) are located on the Cartesian grid points.
CTF correction: It remains to correct the effect of CTFs.
From Eq. (1), each Ci is a mask on the Fourier domain, and
we can also compute its Fourier-Bessel expansion coefficients
cik,q similar to Eq. (6). Then the effect of CTF on Ĩi can be
estimated by applying the same operator as in Eq. (7) and
replace aik,q by cik,q , which yields the Fourier coefficients
C̃i(ξ1, ξ2) of the effective CTF according to Eq. (8). Based
on these, we perform the following CTF correction to esti-
mate the underlying clean projection image:

Îi(x, y) = F−1

(
F(Ĩi)(ξ1, ξ2)

C̃i(ξ1, ξ2)

)
(x, y). (9)

The main advantage of our approach compared to other
existing class averaging methods (e.g., [9, 8]) is that it does
not require clustering and rotation of the Cartesian grid im-
ages. Also, the denoised coefficients in Eq. (7) for different k
can be computed in parallel.

3. EXPERIMENTAL RESULTS

We apply our method on both simulated and experimental
datasets. We compare with several existing approaches: (1)
ASPIRE 2D class averaging [7], (2) Covariance Wiener Filter
(CWF) [19], (3) RELION [8], (4) Steerable Graph Laplacian
(SGL) [20]. All experiments were performed on a Linux sys-
tem with a 60 cores Intel Xeon CPUs (12 cores were used),
running at 2.3GHz with 512GB RAM in total.
Simulated dataset: We generate n = 104 projection images
from the centered volume of 70S ribosome, where viewing
directions are uniformly distributed over SO(3). The effects
of CTF and additive white Gaussian noise are added with
SNR = 0.05 and 0.01, which are typical in real problems.
In Fig. 3, we display samples of denoised images by different
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Fig. 3: Top: Image samples of simulated 70S ribosome dataset with SNR = 0.05 and 0.01. Bottom: Image samples of HIV-1 Nef dataset.
Different columns display noisy images, clean projections and denoising results of different methods.

Table 1: MSE of the denoised images on 70S ribosome.
SNR MFVDM SGL CWF ASPIRE

0.05 0.0177 0.0193 0.0313 0.0376
0.01 0.0383 0.0527 0.0637 0.273

Clean MFVDM RELION SGL CWF ASPIRE

Fig. 4: 3D ab initio models of 70S ribosome at SNR = 0.01.
methods. The averaged mean squared errors (MSEs) between
the denoised images and the clean projections are shown in
Tab. 1. Our method achieves the lowest MSEs at all SNR lev-
els. To further demonstrate the importance of denoising, we
use a common-lines based algorithm [21] to generate the 3D
ab initio models from 103 denoised images of each method
for SNR = 0.01 (see Fig. 4). Fig. 4 shows that only our ap-
proach obtains a comparatively accurate model.
Experimental dataset: We also test our method on the ex-
perimental dataset HIV-1 Nef [22] which is available in the
Electron Microscope Pilot Image Archive (EMPIAR) [23].
Samples of noisy and clean projections are shown in the first
column of Fig. 3. Again, we take n = 104 images as input to
perform denoising by different methods. As shown in Fig. 3,
visually the result of our approach is cleaner than the results
of other methods. In Fig. 5, we show the 3D ab initio models
generated from the denoised images and compare them to the
reference volume. In addition to visual inspection, we use the
Fourier shell correlation (FSC) [2] between the reconstruc-
tion and the original volume to quantify the resolution, which
is determined by the 0.143 cutoff of FSC (see Tab. 2). Our
models achieve the highest resolutions.
Runtime: In Tab. 3, we report the runtime of different ap-
proaches on each dataset for denoising 104 images.

MFVDM RELION

CWF SGL ASPIRE

Ref.

Ref. Low Res. MFVDM RELION

CWF SGL ASPIRE

Ref.

Ref. Low Res.

Fig. 5: 3D ab initio models of HIV-1 Nef. Two views are shown
here. ’Ref.’ and ‘Ref. Low Res.’ represent the original reference
volume the Gaussian filtered volume,

Table 2: The volume resolutions (lower is better).
Dataset MFVDM RELION CWF SGL ASPIRE

70S rib. 14.8Å 25.4Å 44.4Å 39.5Å 17.7Å
HIV-1 Nef 8.69Å 9.78Å 39.12Å 39.12Å 16.76Å

Table 3: The runtime (in minutes) of different methods on 70S ribo-
some (SNR = 0.01) and HIV-1 Nef datasets.

dataset MFVDM RELION SGL CWF ASPIRE

70S rib. 12 117 12 11 15
HIV-1 Nef 32 127 71 36 49

4. CONCLUSION

In this paper, we present a novel framework for cryo-EM im-
age denoising by using MFVDM for improving the identifi-
cation and alignment of images with similar views. In addi-
tion, denoising and CTF correction are efficiently performed
on the truncated Fourier-Bessel expansion coefficients of im-
ages which avoids interpolation error occurred in directly ro-
tating and averaging Cartesian grid images. Our method out-
performs existing methods in terms of the quality of the de-
noised images as well as the resulting 3D ab initio reconstruc-
tion, especially at low SNR.
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