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ABSTRACT

Cascading bandit (CB) is a popular model for web search and
online advertising. However, the stationary CB model may
be too simple to cope with real-world problems, where user
preferences may change over time. Considering piecewise-
stationary environments, two efficient algorithms, GLRT-Ca-
scadeUCB and GLRT-CascadeKL-UCB, are developed.
Comparing with existing works, the proposed algorithms: i)
are free of change-point-dependent information for choosing
parameters; ii) have fewer tuning parameters; iii) improve
regret upper bounds. We also show that the proposed algo-
rithms are optimal up to logarithm terms by deriving a min-
imax lower bound Ω(

√
NLT ) for piecewise-stationary CB.

The efficiency of the proposed algorithms is validated through
numerical tests on a real-world benchmark dataset.

Index Terms— Online Learning, Cascading Bandits,
Non-stationary Bandits, Change-point Detection.

1. INTRODUCTION

Online recommendation and web search are of significant im-
portance in the modern economy. Based on a user’s brows-
ing history, these systems strive to maximize satisfaction and
minimize regret by presenting the user with a list of items
(e.g., web pages and advertisements) that meet her/his prefer-
ence. Such a scenario can be modeled via cascading bandits
(CB) [1], where an agent aims to identify the K most attrac-
tive items out of total L items contained in the ground set.

CB can be viewed as multi-armed bandits (MAB) tailored
for cascade model (CM) [2] that depicts a user’s online behav-
ior. Existing works on CB [1] and MAB [3–6] can be catego-
rized according to whether stationary or non-stationary envi-
ronment is studied. In stationary environments, the attraction
(or reward) distributions do not evolve over time. On the other
hand, non-stationary environments are prevalent in real-world
applications, as user’s preference is time-varying [7, 8]. The
most common non-stationary environments include adversar-
ial [9], piecewise-stationary [10], and slow-varying [11].

In this paper, we focus on the piecewise-stationary envi-
ronment, where the user’s preference remains stationary over
a few time slots, named piecewise-stationary segments, but

1indicates equal contributions. This work has been supported by the
IBM-Illinois Center for Cognitive Computing Systems Research, and the Al-
fred P. Sloan Foundation.

can shift abruptly at some unknown slots, called change-
points. To address the piecewise-stationary MAB, two
types of approaches have been proposed in the literature:
passively adaptive approaches [10–12] and actively adap-
tive approaches [13–16]. Passively adaptive approaches
ignore when a change-point occurs. For active adaptive
approaches, a change-point detection algorithm such as
CUSUM [14, 17] and Page Hinkley Test (PHT) [14, 18] is
included. Within the area of piecewise-stationary CB (PS-
CB), only passively adaptive approaches have been stud-
ied [19]. In this context, we introduce the generalized likeli-
hood ratio test (GLRT) [15,20] for actively adaptive CB algo-
rithms. In particular, we develop two GLRT based algorithms
GLRT-Cascade-UCB and GLRT-CascadeKL-UCB to
enhance both theoretical and practical effectiveness for PS-
CB. The merits of this paper are summarized as follows
1. Practically oriented. The proposed GLRT based algo-

rithms are more practical than previous works [13, 14],
since: i) no change-point-dependent parameter is required
by GLRT; ii) fewer tuning parameters are required.

2. Tighter regret bounds. Both algorithms are shown to
have regret boundsO(

√
NLT log T ), where L is the num-

ber of items and T is the number of time slots. Our re-
gret bound tightens those of [19] by a factor of

√
L and√

L log T , respectively.
3. Lower-bound matching. We establish that the minimax

regret lower bound for PS-CB is Ω(
√
NLT ). Such a lower

bound: i) implies the proposed algorithms are optimal up
to a logarithm factor; ii) is the first to characterize depen-
dence on N , L, and T for PS-CB.

4. Numerically attractive. Numerical experiments on a real-
world benchmark dataset reveal the merits of proposed al-
gorithms over state-of-the-art approaches.

2. PROBLEM FORMULATION
2.1. Cascade Model and Cascading Bandits
CB [1], as a learning variant of CM, depicts the interaction
between the agent and the user on T time slots. CM [2] ex-
plains the user’s behavior in a specific time slot t.

In CM, the user is presented with a K-item ranked list
At := (a1,t, . . . , aK,t) ∈ ΠK (L) fromL at time slot t, where
L := {1, 2, . . . , L} is a ground set containing L items (e.g.,
web pages or advertisements), and ΠK (L) is the set of allK-
permutations of L. CM can be parameterized by the attrac-
tion probability vector wt = [wt(1), . . . ,wt(L)]

> ∈ [0, 1]L.
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The user browses the list At from the first item a1 in order,
and each item ak attracts the user to click it with probability
wt(ak). The user will stop the process after clicking the first
attractive item. In particular, when an item ak,t is clicked, it
means that i) items from a1,t to ak−1,t are not attractive to the
user; and ii) items ak+1,t to aK,t are not browsed so whether
they are attractive to the user is unknown.

Building upon CM, a CB problem can be described by a
tuple (L, T , {f`,t}`∈L,t∈T ,K), where T := {1, 2, . . . , T}
collects all T time slots. Whether the user is attracted by item
` at time slot t is denoted by a Bernoulli random variable Z`,t,
whose pmf is f`,t. As convention, Z`,t = 1 indicates item `
is attractive to the user. We also denote Zt := {Z`,t}`∈L
as all the attraction variables. Clearly, the {f`,t}`∈L,t∈T are
parameterized by the attraction probability vectors {wt}t∈T ,
which are unknown to the agent. Since CB is for stationary
environments, wt is time-invariant, and can be simplified as
w. CB poses a mild assumption on {f`,t}`∈L,t∈T .
Assumption 1. The attraction distributions {f`,t}`∈L,t∈T
are independent both across items and time slots.

Per slot t, the agent recommends a list of K items At to
the user based on the feedback up to time slot t − 1. The
feedback at time slot t refers to the index of the clicked item,
given by

Ft =

{
∅, if no click,
arg mink{1 ≤ k ≤ K : Zak,t,t = 1}, otherwise.

After the user browses At follows the protocol described by
CM, the agent observes the feedback Ft. Along with Ft is a
zero-one reward indicating whether there is a click

r (At,Zt) = 1−
K∏
k=1

(
1− Zak,t,t

)
, (1)

where r (At,Zt) = 0 if Ft = ∅. Then, this process proceeds
to time slot t + 1. The goal of the agent is to maximize the
expected cumulative reward over the whole time horizon T .
Noticing that Z`,ts are independent, the expected reward at
time slot t can be computed as E [r (At,Zt)] = r (At,w).
The optimal listA∗ remains the same for all time slots, which
is the list containing the K most attractive items.

2.2. Piecewise-Stationary Cascading Bandits
The stationarity assumption on CB limits its applicability for
real-world applications, as users tend to change their pref-
erences as time goes on [7]. This fact leads to PS-CB. Con-
sider a PS-CB problem withN segments, where the attraction
probabilities of items remain identical per segment. Mathe-
matically, N can be written as

N = 1 +

T−1∑
t=1

I{∃` ∈ L s.t. f`,t 6= f`,t+1}, (2)

where I{·} is the indicator function, and a change-point is the
time slot t that satisfies ∃` ∈ L s.t. f`,t 6= f`,t+1. These
change-points are denoted by ν1, . . . , νN−1 in a chronolog-
ical manner. Specifically, ν0 = 0 and νN = T are intro-
duced for consistency. For the ith piecewise-stationary seg-
ment t ∈ [νi−1 + 1, νi], f i` and wi(`) denote the attraction

distribution and the expected attraction of item `, respectively,
which are again unknown to the agent. Attraction probability
vector wi = [wi(1), . . . ,wi(L)]> collects wi(`)s.

In a PS-CB problem, the agent interacts with its users in
the same manner of CB. The agent’s policy is evaluated by its
expected cumulative reward, or its expected cumulative re-
gret:

R(T ) = E

[
T∑
t=1

R (At,wt,Zt)

]
, (3)

where the expectation E[·] is taken with respect to a sequence
of Zt and the corresponding At. Here, R(At,wt,Zt) =
r(A∗t ,wt)− r(At,Zt) is the regret at time slot t with

A∗t = arg max
At∈ΠK(L)

r (At,wt)

being the optimal list that maximizes the expected reward.

3. ALGORITHMS
3.1. Generalized Likelihood Ratio Test
Our adaptive change-point detection relies on the GLRT sum-
marized in Algorithm 1. Compared with existing change-
point detection methods with provable guarantees [13, 14],
advantages of GLRT are twofold: i) Fewer tuning parame-
ters. GLRT only requires one parameter, while CUSUM [14]
and CMSW [13] have three and two parameters, respectively.
ii) Less prior knowledge needed. GLRT does not require the
information on the smallest magnitude among the change-
points, which is essential for CUSUM.

Algorithm 1 GLRT Change-Point Detector.
Require: observations X1, . . . , Xn and confidence level δ
1: Compute the GLR statistic GLR(n) according to (4) and the threshold
β(n, δ) according to (4)

2: Return True if GLR(n) ≥ β(n, δ) else False.

Next, GLRT is formally introduced. Suppose we have a
sequence of Bernoulli random variables {Xt}nt=1 and aim to
determine if a change-point exists. GLRT adopts GLR statis-
tic as the judgement, which is

GLR(n) = sup
s∈[1,n−1]

[s× KL (µ̂1:s, µ̂1:n) + (n− s)×

KL (µ̂s+1:n, µ̂1:n)].

Here, µ̂s:s′ is the empirical mean of observations from Xs to
Xs′ , and KL(x, y) is the Kullback–Leibler (KL) divergence.
By comparing GLR(n) in (4) with the threshold β(t, δ), one
can decide whether a change-point appears, where

β(t, δ) = 2G
(

log(3t
√
t/δ)/2

)
+ 6 log(1 + log t), (4)

and G(·) has the same definition as that in (13) of [21]. The
choice of δ influences the sensitivity of the GLRT. For exam-
ple, a larger δ makes the GLRT response faster to a change-
point, but increases the probability of false alarm.

3.2. The GLRT Based CB Algorithms
The proposed algorithms, GLRT-CascadeUCB and GLRT-
CascadeKL-UCB, are presented in Algorithm 2. On a high
level, three phases comprise the proposed algorithms. Phase
1: The forced uniform exploration to ensure that sufficient
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samples are gathered for all items to perform the GLRT de-
tection. Phase 2: The UCB-based exploration (UCB or KL-
UCB) to learn the optimal list on each piecewise-stationary
segment. Phase 3: The GLRT change-point detection to mon-
itor if global restart should be triggered.

By recommending the list At and observing the user’s
feedback Ft (line 9), we update the statistics (line 11) and
perform the GLRT detection (line 12). If a change-point is
detected, we set n` = 0 for all ` ∈ L, and τ = t (line 13). Fi-
nally, the UCB indices of each item are computed as follows
(line 18),

UCB(`) = ŵ(`) +
√

3 log(t− τ)/(2n`), (5)

UCBKL(`) = max{q ∈ [ŵ(`), 1] : n`×
KL(ŵ(`), q) ≤ g(t− τ)},

(6)

where g(t) = log t+ 3 log log t.

Algorithm 2 The Proposed Algorithms
Require: The time horizon T , the ground set L, K, exploration probability

p > 0, and confidence level δ > 0
1: Initialization: τ ← 0 and n` ← 0, ∀` ∈ L
2: for all t = 1, 2, . . . , T do
3: a← (t− τ) mod bL

p
c

4: if a ≤ L then
5: Choose At such that a1,t ← a and a2,t, . . . , aK,t are chosen

uniformly at random
6: else
7: ComputeAt = argmaxA∈ΠK(L) r (A,UCB or UCBKL)
8: end if
9: Recommend the listAt to user, and observe feedback Ft

10: for all k = 1, . . . , Ft do
11: ` ← ak,t, n` ← n` + 1, X`,n`

← I{Ft = k} and ŵ(`) =
1
n`

∑n`
n=1X`,n

12: if GLRT(X`,1, . . . , X`,n`
; δ) = True then

13: n` ← 0, ∀` ∈ L, and τ ← t
14: end if
15: end for
16: for ` = 1, · · · , L do
17: if n` 6= 0 then
18: Compute UCB(`) according to (5) for GLRT-CascadeUCB

or UCBKL(`) according to (6) for GLRT-CascadeKL-UCB
19: end if
20: end for
21: end for

Besides the time horizon T , the ground set L, the num-
ber of items in list K, the proposed algorithms only require
two parameters p and δ as inputs. The probability p is used
to control the portion of uniform exploration in Phase 1. The
confidence level δ is the parameter required by GLRT, and the
choice of δ will be discussed in Section 4. In Algorithm 2, we
denote the last detection time as τ . From slot τ to current
slot, let nl denote the number of observations for `th item,
and ŵ(`) its corresponding sample mean. The algorithm de-
termines whether to perform a uniform or UCB-based explo-
ration depending on line 4, which ensures the fraction of time
slots performing the uniform exploration is about p. If the
uniform exploration is triggered, the first item in the recom-
mended list At will be item a in Line 3, and the remaining
items in the list are chosen at random (line 5), which ensures

item awill be observed by the user. If UCB-based exploration
is adopted at time slot t, the algorithm chooses K items (line
7) with K largest UCB indices,

4. THEORETICAL RESULTS
Without loss of generality, for the ith piecewise-stationary
segment, the ground set L is first sorted in decreasing or-
der according to attraction probabilities, that is wi(si(1)) ≥
· · · ≥ wi(si(L)), ∀si(`) ∈ L. The optimal list at ith segment
is thus all the permutations of the setA∗i = {si(1), . . . , si(K)}.
The item `∗ is optimal if `∗ ∈ A∗i , otherwise an item ` is
called suboptimal. The gap between the attraction proba-
bilities of ` and `∗ at ith segment is defined as: ∆i

`,`∗ =

wi(`∗) − wi(`). Similarly, the largest amplitude change
among items at change-point νi is defined as ∆i

change =

max`∈L
∣∣wi+1(`)−wi(`)

∣∣, with ∆0
change = max`∈L

∣∣w1(`)
∣∣.

We have the following assumption for the theoretical analysis.

Assumption 2. Define di = d 4Lβ(T,δ)
p(∆i

change)
2 + L

p e and assume

νi − νi−1 ≥ 2 max{di, di−1}, ∀i = 1, . . . , N − 1.

Note that Assumption 2 is standard in a piecewise-
stationary environment, and similar assumptions can be
found in other actively adaptive approaches [13–15] as well.
Assumption 2 guarantees that with high probability all the
change-points are detected within the interval [νi+1, νi+di],
which is equivalent to saying all change-points are detected
correctly and quickly.

4.1. Regret Upper Bound for GLRT-CascadeUCB
The regret of GLRT-CascadeUCB is as follows.

Theorem 1. Suppose that Assumptions 1 and 2 are satisfied,
GLRT-CascadeUCB guarantees

R(T ) ≤
N∑
i=1

C̃i + Tp+

N−1∑
i=1

di + 3NTLδ,

where C̃i =
∑L
`=K+1

12
∆i

si(`),si(K)

log T + π2

3 L.

Proof. See supplemental material online at [22].

Corollary 1 follows directly from Theorem 1.
Corollary 1. Let ∆min

change = mini≤N−1 ∆i
change denote the

smallest magnitude of any change-point on any item, and
∆min

opt = mini≤N ∆i
si(K+1),si(K) be the smallest magnitude

of a suboptimal gap on any one of the stationary segments.
The regret of GLRT-CascadeUCB is established by choos-
ing δ = 1/T and p =

√
NL log T/T :

R(T ) = O

N(L−K) log T

∆min
opt

+

√
NLT log T(
∆min

change

)2

 . (7)

Proof. See supplemental material online at [22].

As T becomes larger, the regret is dominated by the cost
of the change-point detection component, implying the regret
is O(

√
NLT log T/(∆min

change)
2).
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4.2. Regret Upper Bound for GLRT-CascadeKL-UCB
The regret of GLRT-CascadeKL-UCB is as follows.

Theorem 2. Suppose that Assumptions 1 and 2 are satisfied,
GLRT-CascadeKL-UCB guarantees

R(T ) ≤ T (N − 1)(L+ 1)δ + Tp

+

N−1∑
i=1

di +NK log log T +

N−1∑
i=0

D̃i,

where D̃i is a term depending on log T and the suboptimal
gaps. Detailed expression can be found in (10) in the supple-
mental material online at [22].
Proof. See supplemental material online at [22].
Corollary 2. Choosing the same δ and p as in Corollary 1,
GLRT-CascadeKL-UCB has the same regret as (7).

4.3. Minimax Regret Lower Bound
In this subsection, we derive a minimax regret lower bound
for PS-CB, which is tighter than Ω(

√
T ) proved in [19].

Theorem 3. IfL ≥ 3 and T ≥ N(L−1)2/(L log(4/3)), then
for any policy, the worst-case regret is at least Ω(

√
NLT ).

Proof. See supplemental material online at [22].
This lower bound is the first characterization involvingN ,

L, and T . And it indicates our proposed algorithms are nearly
order-optimal within a logarithm factor

√
log T .

4.4. Discussion
The regrets of GLRT-CascadeUCB and GLRT-Cascade-
KL-UCB can be upper bounded byR(T ) = O

(√
NLT log T

)
.

Note that compared to CUSUM in [14] and CMSW in [13],
the tuning parameters are fewer and does not require the
smallest magnitude among the change-points ∆min

change as
shown in Corollary 1. Moreover, parameter δ and p fol-
low simple rules as shown in Corollary 1, while complicated
parameter tuning steps are required in CUSUM and CMSW.
The regrets of proposed algorithms are improved over state-
of-the-art algorithms in [19] either in the dependence on L
or both L and T , as their upper bounds are O(L

√
NT log T )

and O(L
√
NT log T ), respectively.

5. NUMERICAL TESTS

In this section, we carry out numerical tests on the Yahoo!
benchmark dataset1 designed for the evaluation of bandit
algorithms to validate the effectiveness of proposed algo-
rithms. Four baseline algorithms are chosen for compari-
son, where CascadeUCB1 [1] and CascadeKL-UCB [1]
are near-optimal algorithms to handle stationary CB; while
CascadeDUCB [19] and Cascade-SWUCB [19] cope with
piecewise-stationary CB through a passively adaptive manner.
In addition, two oracle algorithms, Oracle-CascadeUCB1
and Oracle-Cascade-KL-UCB, that have access to change-
point times are also selected for comparison. In particular, the

1https://webscope.sandbox.yahoo.com

oracle algorithms restart when a change-point occur. Based
on the theoretical analysis by [19], we choose ξ = 0.5,
γ = 1 − 0.25/

√
T for CascadeDUCB and choose τ =

2
√
T log T for CascadeSWUCB. For GLRT-CascadeUCB

and GLRT-Ca-scadeKL-UCB, we set δ = 1/T and p =
0.1
√
N log T/T .

We pre-process the dataset by adopting the same method
as [13], where L = 6, K = 2 and N = 9. To make the
experiment nontrivial, several modifications are applied to the
dataset: i) the click rate of each item is enlarged by 10 times;
ii) the time horizon is reduced to T = 90000, which is shown
in Figure 1a. Figure 1b presents the cumulative regrets of all
algorithms by averaging 100 trials, which shows the regrets
of our proposed algorithms are just slightly above the oracle
algorithms and significantly outperform other algorithms.
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Fig. 1: (a) Click rate of each item of Yahoo! dataset with
T = 90000, L = 6 and N = 9, and (b) Expected cumulative
regrets of different algorithms on Yahoo! dataset.

6. CONCLUSION

Two new actively adaptive algorithms for piecewise-stationary
cascading bandit are developed in this work, which achieve
the same near-optimal regret upper bound on the order of
O
(√
NLT log T

)
. This matches our minimax regret lower

bound up to a
√

log T factor. Compared with state-of-the-art
algorithms that adopt passively adaptive approach such as
CascadeSWUCB and CascadeDUCB, our new regret upper
bounds are reduced by O(

√
L) and O(

√
L log T ) respec-

tively. Numerical tests on Yahoo! dataset show the improved
efficiency of the proposed algorithms. Several interesting
questions are still left open for future work. One challenging
problem lies in whether the

√
log T gap in time steps T be-

tween regret upper bound and lower bound can be closed. In
addition, we are also interested in extending the single click
models to multiple clicks models in future work.
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